

## **COVID19** Complicazioni in seno alla pneumologia

#### Dr. Med. Pietro Gianella Caposervizio Servizio di Pneumologia Ospedale Regionale di Lugano

#### Contents

#### 1. Correlations

- Radio-histopathological
- Radio-clinical
- 2. Thorax CT
  - Diagnosis and differential diagnosis
  - Staging
  - Complications

#### 3. Lung sequelae

- SARS
- SARS-CoV-2

### FAQ







#### Viral pneumonia

diffuse alveolar damage

- hyaline tissue formation
- ✤ edema
- ✤ alveolar hemorrhage
- interstitial lymphocyte
   infiltration
- type 2 cell hyperplasia

fibrosis





**Ground glass opacity**: slight increase in density due to air space filling or interstitial thickening without loss of definition bronchial and vascular structures.

<u>Histopathology</u>: alveolar oedema and hyaline membranes (fibrin, cellular debris, red blood cells, rare neutrophils and macrophages)





**Crazy paving**: thickening of interlobular and intralobular septa on ground glass. <u>Histopathology</u>: alveolar oedema and inflammatory interstitial damage.





**Consolidation**: increased density when alveolar air is replaced by pathological fluids, cells or tissues with loss of definition of bronchial and vascular structures.

Histopathology: fibromixoid exudate.





Vascular thickening: segmental swelling around parenchymal lesions.

<u>Histopathology</u>: damage and swelling of the capillary walls caused by pro-inflammatory factors with possible micro-trombiosis.



## Lung injury associated with SARS-CoV2

- 1. Organizing pneumonia
- 2. Diffuse Alveolar Damage
  - *hyaline membrane formation*
  - pneumocyte injury
  - vascular congestion



- \* Intra-alveolar fibroblasts mixed with fibrin and inflammatory cellular infiltration
- # Diffuse type II pneumocyte hyperplasia
- ► Fibrinoid vascular necrosis

Tian S, et al.

**Pathological study of the COVID-19 through postmortem core biopsies.** Mod Pathol. 2020



| Stage                | СТ                                                         | Histopathology                                                                           |  |  |
|----------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Initial stage        | ground-glass opacities                                     | acute phase of<br>diffuse alveolar damage                                                |  |  |
| Progression<br>stage | consolidation on the existing ground-glass opacities       | evolution to                                                                             |  |  |
|                      | pure consolidation or may<br>present the melted sugar sign | diffuse alveolar damage                                                                  |  |  |
| Later stage          | consolidation to<br>band-like opacities                    | gradual <b>resolution</b> of<br>consolidation and turning<br>into ground-glass opacities |  |  |

|                              | S. Salehi, et al.                            |
|------------------------------|----------------------------------------------|
| Simposio SSMIG - TI / Pag. 9 | Long-term Pulmonary Consequences of COVID-19 |
|                              | Journal of Thoracic Imaging 2020             |



## **Radio-clinical presentation**

The radiologic presentation may not correlate with clinical symptomatology



#### 72-yrs colon adenocarcinoma





### **Thorax CT**



- A. Diagnostic value
- B. Staging
- C. Complications





### **A) Diagnostic value**









#### **CO-RADS** (*Covid-19 Imaging Reporting and Data System*)

|           |               | CT findings                                                  |               |
|-----------|---------------|--------------------------------------------------------------|---------------|
| CO-RADS 1 | No            | normal or non-infectious<br>abnormalities                    | SEN (95-98%)  |
| CO-RADS 2 | Low           | abnormalities consistent with infections other than COVID-19 |               |
| CO-RADS 3 | Indeterminate | unclear whether COVID-19 is present                          |               |
| CO-RADS 4 | High          | abnormalities suspicious for<br>COVID-19                     |               |
| CO-RADS 5 | Very high     | typical COVID-19                                             | SPEC (35-65%) |
| CO-RADS 6 | PCR +         |                                                              |               |



### **Differential diagnosis of SARS-CoV2 infections**

| Date                                                                                                                           | Mar.<br>23                | Mar.<br>24    | Mar.<br>25 | Mar:<br>26 | Mar.<br>27 | Mar.<br>28 | Mar.<br>29 | Mar.<br>30                     | Mar:<br>31 | Apr. | Apr.<br>2 | Apr.<br>3 | Apr.<br>4 | Apr.<br>5 | Apr.<br>6 | Apr.<br>7 | Apr.<br>8 | Apr.<br>9 | Apr.<br>10 |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|------------|------------|------------|------------|------------|--------------------------------|------------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                                                                                                                                |                           |               |            |            |            |            |            |                                | RX<br>V    | Cł   | est uld ( | т         |           |           |           |           | Best su   | upportiv  | ve care    |
| Hospital day                                                                                                                   |                           |               |            |            |            |            |            |                                | Т          | 2    | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | Ш          |
| Day of illness                                                                                                                 | Т                         | 2             | 3          | 4          | 5          | 6          | 7          | 8                              | 9          | 10   | П         | 12        | 13        | 14        | 15        | 16        | 17        | 18        | +          |
| Laboratory<br>testing                                                                                                          |                           |               |            |            |            |            |            |                                | a          | Ь    | с         |           |           |           |           |           |           |           |            |
| Pa02/FI02<br>(mmHg)                                                                                                            |                           |               |            |            |            |            |            |                                | 339        |      |           | 332       |           |           |           |           |           |           |            |
| CRP<br>(mg/L)                                                                                                                  |                           |               |            |            |            |            |            |                                | 68         |      | 38        |           |           |           | 14        | 15        |           |           |            |
| Leukocytes<br>(x10E9/L)                                                                                                        |                           |               |            |            |            |            |            |                                | 8.6        |      | 9.2       |           |           |           | 13.7      |           |           |           |            |
| Lymphocytes<br>(x10E9/L)                                                                                                       |                           |               |            |            |            |            |            |                                | 0.52       |      | 1.75      |           |           |           | 4.36      |           |           |           |            |
| Thrombocytes<br>(x10E9/L)                                                                                                      |                           |               |            |            |            |            |            |                                | 204        |      | 195       |           |           |           | 285       |           |           |           |            |
|                                                                                                                                |                           | Acute dyspnea |            |            |            |            |            |                                |            |      |           |           |           |           |           |           |           |           |            |
|                                                                                                                                | Pharingodynia - Dry cough |               |            |            |            |            |            |                                |            |      |           |           |           |           |           |           |           |           |            |
|                                                                                                                                |                           |               |            |            |            |            |            |                                |            |      | Produ     | uctive    | cough     |           |           |           |           |           |            |
| Temperature<br>(°C)                                                                                                            |                           |               |            |            |            |            |            |                                | 37-        | 37.1 | 37.5      | 37.5      | 37.5      |           | 37.4-     | - 37-     | 37        | 37        |            |
| Respiratory<br>rate (/min)                                                                                                     |                           |               |            |            |            |            |            |                                | 40         | 26   | 22        | 24        | 28        | 22        | 26        | 24        | 28        | 30        |            |
| EWS-nCoV                                                                                                                       |                           |               |            |            |            |            |            |                                | 10         |      |           |           |           |           |           |           |           |           |            |
|                                                                                                                                | Levofloxacine             |               |            |            |            |            |            | Trimethroprim-Sulfamethoxazole |            |      |           |           |           |           |           |           |           |           |            |
| Laboratory testing                                                                                                             |                           |               |            |            |            |            |            |                                |            |      |           |           |           |           |           |           |           |           |            |
| a SARS-CoV-2 PCR nasofaringeal swab: negative. Influenza A/B +RSV: negative. Pneumococcal and Legionella urinary AG: negative. |                           |               |            |            |            |            |            |                                |            |      |           |           |           |           |           |           |           |           |            |

b SARS-CoV-2 PCR stool + induced sputum + SARS-CoV-2 serum IgG and IgM: negative.

Pneumocystis jirovecii PCR sputum: positive.

77-yrs

stage IV lung NSCLC

E. Rigamonti, D. Salera, AC Gheorghiu, C. Fratila, P. Gianella The many faces of interstitial pneumonia: a case of

**presumed SARS-CoV-2 infection.** Swiss Med Wkly 2020



### **Differential diagnosis of SARS-CoV2 infections**

- pathological chest CT-scan result (March-April 2020 EOC) [210]
- ✤ suspicion of SARS-CoV-2 infection
- \* negative RT-PCR for SARS-CoV-2  $(30\% = 1; 70\% = \geq 2)$  [38; 18%]



E. Rigamonti, T. Fusi-Schmidhauser, G Argentieri, P. Gianella

Differential diagnoses in COVID-19 pandemic: a retrospective descriptive study



#### **Staging bilateral interstitial pneumonia**

#### Early stage : day 0-4





#### **Staging bilateral interstitial pneumonia**

#### Progression: day 5-8





#### **Staging bilateral interstitial pneumonia**

#### Culminating stage: day 9-13





#### **C)** Complications

21 yrs



- Productive cough
- T° 38.5°C
- Increase in PCR and Lc
- RT-PCR for SARS-CoV-2 in progress









Pulmonary abscess



# Functional and radiological outcomes in SARS-CoV-2



- 3 months follow up of 39 SARS-CoV-2+ patients and abnormal Thorax CT
- ✓ 49% dyspnoea (2/3 mMRC 1; 1/3 mMRC 2-4)
- ✓ 56% DLCO abnormalities
- ✓ 82% residual TC abnormalities

P. Gianella, E. Rigamonti, L. Grazioli, G. Argentieri, T. Fusi-Schmidhauser, M. Pons

**Three- months functional and radiological outcomes in SARS-CoV-2** *In press* 





## Functional and radiological outcomes in SARS-CoV-2



Higher level of **D-dimer** on admission could predict impaired DLCO after 3 months

|                               | Y. Zhao, et al.                                                     |
|-------------------------------|---------------------------------------------------------------------|
|                               | Follow-up study of the pulmonary function and related physiological |
|                               | characteristics of COVID-19 survivors three months after recovery.  |
| Simposio SSMIG - TI / Pag. 23 | Eclinical Medcine 2020                                              |



## Lessons from severe acute respiratory syndrome (SARS)

- 15-year follow-up on SARS infections survivors (2003)
- □ 27 patients: chest CT from 2003 to 2018
- □ The extent of pulmonary injury gradually decreased, but the findings were not completely resolved.



 Zhang P, et al.

 Long-term bone and lung consequences associated with hospital 

 acquired SARS: a 15-year follow-up from a prospective cohort study.

 Simposio SSMIG - TI / Pag. 24



### Lessons from severe acute respiratory syndrome (SARS)

- □ The evolution of the pulmonary disease were most prominent within the **first year** after recovery and remained stable afterward until 2018.
- Even in patients with early complete resolution of chest CT abnormalities, pulmonary function took several years to return to normal.
- 15 years after the initial infection, the FEV1/FVC ratio were significantly reduced in patients with residual chest CT abnormalities compared with those with complete radiologic recovery.



|                               | Zhang P, et al.                                                     |
|-------------------------------|---------------------------------------------------------------------|
|                               | Long-term bone and lung consequences associated with hospital-      |
|                               | acquired SARS: a 15-year follow-up from a prospective cohort study. |
| Simposio SSMIG - TI / Pag. 25 | Bone Res. 2020                                                      |

## Determinant factors of residual functional or imaging pulmonary abnormalities

- ✓ Age
- ✓ Comorbidities
- ✓ History of cigarette smoking
- $\checkmark$  Length of hospital admission
- ✓ Severity of the acute disease (ICU admission)



 $\checkmark$  Type of medications administered (such as antiviral or corticosteroid therapy)

|   | Xie L, et al.<br>Follow-up study on pulmonary function and lung radiographic | •  |
|---|------------------------------------------------------------------------------|----|
|   | changes in rehabilitating SARS patients after discharge.                     |    |
| 5 | Chest 2005                                                                   | ęc |



# Which patients should be referred to a pulmonologist for post COVID19 check-up?

- Patients who have residual dyspnea one to two months after diagnosis.
- □ Elite athletes.
- □ Excessively anxious patients.





## What is the role of smoking in COVID19 infections?

□ Quitting smoking reduces the chance of developing a severe COVID19 by 50%.



#### Smoking and COVID-19 Disease Progression

Patanavanich R, Glantz SA.

**Smoking is associated with COVID-19 progression: a meta-analysis.** Nicotine Tob Res. 2020

eoc

Simposio SSMIG - TI / Pag. 28

## What is the role of smoking in COVID19 infections?

□ Nicotine is not protective against COVID19.

**Quitting smoking is always the best choice for health.** 







Richard N van Zyl-Smit et al.

**Tobacco smoking and COVID-19 infection** *The Lancet 2020* 



## Take home messages

- 1. Correlations
  - Radio-histopathological
  - Radio-clinical 😣
- 2. Thorax CT
  - SEN SPEC SPE
  - Complications
- 3. Lung sequelae
  - The long-term effect of COVID-19 on lung parenchyma and pulmonary function remains an outstanding question.





#### **Dr Med Pietro Gianella**

Servizio di Pneumologia Ospedale Regionale di Lugano pietro.gianella@eoc.ch

## **Thank you for your attention**

Simposio SSMIG - TI / Pag. 31

